Индийский ученый применил технологию глубокого обучения для прогнозирования цен криптоактивов

1 min


Исследователь из Технологического института Веллора в Индии предложил метод прогнозирования цен криптоактивов с использованием нейронной сети с долгой краткосрочной памятью (LSTM).

Специалист по обработке и анализу данных Абинхав Сагар (Abinhav Sagar) продемонстрировал
в своем блоге четырехэтапный процесс использования технологии машинного обучения для прогнозирования цен криптоактивов в режиме реального времени, которые «относительно непредсказуемы» по сравнению с традиционными рынками.

По мнению Сагара, хотя машинное обучение достигло некоторого успеха в прогнозировании цен на фондовом рынке, его применение в индустрии криптовалют было ограничено. В подтверждение он заявил, что цены криптоактивов колеблются в связи с быстрым развитием технологий, а также экономическими и политическими факторами и вопросами безопасности.

Предложенный Сагаром четырехэтапный метод включает:

  • сбор данных о криптовалюте в режиме реального времени;

  • подготовку данных для обучения нейронной сети;

  • тестирование прогноза с использованием нейронной сети LSTM;

  • визуализацию результатов прогноза.

  • Для обучения сети Сагар использовал набор данных
    от CryptoCompare, учитывая цену, объем торгов, наибольшее и наименьшее значение цены.

    Он опубликовал
    информацию о проекте на GitHub и описал функции, которые он использовал для нормализации значений данных при подготовке к машинному обучению. Прежде чем составить график и визуализировать результаты сетевых прогнозов, Сагар отметил, что в качестве показателя оценки он использовал абсолютную погрешность среднего значения, которая измеряет среднюю величину ошибок в наборе прогнозов без учета их направления.

    price prediction

    Визуализация Сагара прогноза цены криптовалюты в режиме реального времени с использованием нейронной сети LSTM. Источник: towardsdatascience.com

    Машинное обучение уже не первый раз применяется в индустрии криптовалют и блокчейна для получения статистических данных. Летом аналитическая компания Elliptic в сотрудничестве с Массачусетским технологическим институтом (MIT) исследовали
    более 200 000 транзакций в сети Биткоина на предмет их связи с преступной деятельностью. Для того, чтобы отсортировать 203 769 транзакций на общую сумму $6 млрд, исследовательская группа задействовала алгоритм с машинным обучением.

    Источник


    Понравилось? Поделись с друзьями в соц-сетях!

    B-MAG

    Редакция Бизнес-журнала b-mag.ru. Мы публикуем материалы о бизнесе и деловой жизни, предпринимательстве и стартапах, инвестициях, бизнес идеях, технологиях и инновациях. Business life today – деловая жизнь сегодня.

    Новые комментарии:

    Ваш e-mail не будет опубликован. Обязательные поля помечены *

    11 − девять =

    Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

    Choose A Format
    Story
    Formatted Text with Embeds and Visuals